学 术

分享到微信 ×
打开微信“扫一扫”
即可将网页分享至朋友圈
博士后学术沙龙(第56期)
文:鲁泽燕 张高俊 来源:抗干扰实验室 党委教师工作部、人力资源部(教师发展中心) 时间:2021-10-19 6053

  为搭建我校博士后之间的学术交流平台,促进学术水平提升,学校博士后管理办公室组织开展博士后学术沙龙活动。本次沙龙由我校博士后常博、黄河、孙远欣、李晓倩和邵志超分享其研究成果,诚挚邀请感兴趣的师生参加。

  一、时 间:2021年10月20日(周三)14:00

  二、地 点:清水河校区经管楼宾诺咖啡

  三、主办单位:电子科技大学博士后管理办公室

  四、承办单位:通信抗干扰技术国家级重点实验室  电子科技大学博士后联谊会

  五、活动安排:

  报告1:

  (1)主题:面向工业互联网应用的通信控制融合基础及关键技术

  (2)主讲人:常博  通信抗干扰技术国家级重点实验室博士后 

  (3)交流内容:

  随着5G技术的研发和部署,新兴应用获得了快速发展;以AR/VR等为代表的视频直播类应用和以智慧门店为代表的端-云-变协同类应用已经获得了较好的落地实现,并显著改变了人们的生活和工作。但是,以远程控制和智能制造为代表的工业互联网应用的发展却远远落后。一方面,工业互联网应用以其巨大的社会经济效益,有望成为未来移动通信发展的引擎。另一方面,移动通信需要做出巨大变革才能支撑以智能制造为代表的工业互联网应用。亟需探索无线通信的信息空间与智能体设备控制的物理空间紧密耦合的无线控制网络新架构、新理论和新技术。

  面对上述需求和挑战,本报告以通信控制交叉学科融合新型信息理论为切入点,从通信角度将通信信息传输与控制状态更新进行融合,探索通信信息传输与控制物理状态更新互相表征,从而奠定通信和控制融合方法设计的基础。在融合理论基础上,本报告对面向无线控制系统的可靠数据收集、无线控制系统传输调度、和智能制造中基于受限无线网络的定制化任务实时动态分配等技术进行了深入分析;从而形成无线控制完整闭环研究。本研究将为无线通信网络在工业互联网应用中实时控制中的应用和部署奠定基础。

  (4)主讲人简介:

  常博,2020年7月电子科技大学博士毕业,获工学博士学位。2019年5月至2020年5月,英国格拉斯哥大学博士联合培养。现为电子科技大学通信抗干扰技术国家级重点实验室全职博士后。主要从事超可靠低延迟通信、面向工业互联网应用的通信控制交叉融合、基于5G/6G的机器人学、远程控制、基于信任的安全技术等研究。以第一作者身份发表相关领域一二区SCI长文期刊7篇,CCF A类Infocom 会议论文2篇,ICC、Globecom等顶级会议论文5篇,获得授权专利3项,参与出版书籍2部。

  报告2:

  (1)主题:Full Duplex Non-orthogonal Multiple Access with Layers-based Optimized Mobile Relays Subsets Algorithm in B5G/6G Ubiquitous Networks

  (2)主讲人:黄河  通信抗干扰技术国家级重点实验室博士后

  (3)交流内容:

  In view of noteworthy communications performance improvements for future B5G/6G ubiquitous networks (such as cognitive Internet of Things-IoT network, UAV communications, air-space-ground integration network and so on), cooperative communications (CC) diversity with relays selection algorithms has been extensively studied to significantly improve communications quality. In light of unsolved millennium issue in CC— Non-deterministic Polynomial (NP) and NP-hard problems have not been solved efficiently for relays subsets selection, in this talk theorems of relays subsets with K-layers power allocation standard have been further put forward to explore better performance in B5G/6G networks. We propose unified layers based optimized mobile relays subsets algorithms for full-duplex (FD) non-orthogonal multiple access (NOMA) to greatly improve transmission rates. After taking into account fundamental properties of relays, such as mobile relays nodes state, relays locations, fading characteristics and so on, optimized FD-NOMA algorithm based on these relays features has been presented to improve transmission rates, and a related series of relays subsets theorems have been derived and proved, then minimum upper bound of maximum transmission rates are estimated to reveal two way balanced optimal transmission conclusion for FD-NOMA. Furthermore, simulations results show that proposed algorithm has 1dB to 3dB advantage than other relays subset algorithms for signal to interference and noise ratio (SINR), and it can more efficiently transform NP-hard problem to P problem for relays selection. Importantly, under revealed two-way balanced optimal transmission phenomenon for FD-NOMA, proposed scheme with FD-NOMA has more than 2 times minimum device-to-device (D2D) transmission rates higher than other classical relays selection algorithms.

  (4)主讲人简介:

  He Huang received his Ph.D degree in school of Information and Communication Engineering, Beijing University of Posts and Telecommunications of China (BUPT), and he is now post-doctor with the National Key Lab on Communications of University of Electronic Science and Technology of China(UESTC). He has received the Academic Star award in BUPT 2016. He serves as reviewers for several journals, such as, IEEE Transactions on wireless communications, IEEE Transactions on Communications, IEEE Access, IEEE Communication letters, International Journal of Electronics and Physical Communications, and for IEEE Conference WCNC. His main research interests include critical technologies in B5G/6G, cooperative communications, UAV communications, cognitive radios and so on.

  报告3:

  (1)主题:面向电磁频谱战的电磁干扰与无线通信

  (2)主讲人:孙远欣  通信抗干扰技术国家级重点实验室博士后 

  (3)交流内容:

  现代战争在信息获取、信息传输、信息应用、信息安全等方面日益依赖电磁频谱,使得电磁频谱战的战略地位日益凸显。因此电磁频谱战是当今最为重要的战争形式之一。电磁干扰和抗干扰通信是电磁频谱战中的重要组成部分。

  现有研究当中的电磁干扰和抗干扰研究当中的不足点主要在于干扰和通信分别展开研究,并没有把两者放到一起研究两者的博弈和对抗。目前的抗干扰通信大多针对固定的干扰样式研究干扰的认知和抗干扰决策。而电磁干扰研究假设通信方不会采取抗干扰措施,在此基础上研究最优干扰信号波形,以及干扰功率在时、频、空等维度上的最优分配。叫少量的研究将干扰和通信构建为two player zero sum博弈,但效用函数的构建较主观且基于博弈双方掌握完全信息的假设。

  基于此,本报告展示了一种干扰和通信并存的场景,并研究了双方的对抗。本报告的研究基于较经典的抗干扰系统模型,包含通信的发射方、接收方和干扰方。在效用函数的构建方面考虑了在对抗中双方目的,即,通信方的目的在于给定最大功率的情况下最大化信道容量。而干扰方的目的在于给定最小功率的情况下最小化信道容量。对于干扰方无法得到通信方的信道容量的问题,在本报告中提供了干扰方获取通信方信道容量的方法。在二者的对抗当中行为呈现为惯序的形式,即通信方会基于干扰方的行动做抗干扰决策,而干扰也会基于通信方的行动更新干扰决策。在此基础上设计了预测机制,干扰方会基于所掌握的信息预测通信方下一步的行动,提前改变干扰策略。仿真结果显示预测机制能够有效地降低通信方的信道容量。

  (4)主讲人简介:

  孙远欣,电子科技大学通信抗干扰实验室博士/博士后,合作导师为唐万斌教授。研究方向:软件无线电、通信抗干扰、TDMA MAC协议等。

  报告4:

  (1)主题:A Unified Framework for Joint Sensing and Communication in Resource Constrained Mobile Edge Networks

  (2)主讲人:李晓倩  通信抗干扰技术国家级重点实验室博士后 

  (3)交流内容:

  Mobile crowd sensing (MCS) is a promising paradigm which leverages sensor-embedded mobile devices to collect and share data for supporting various emerging applications such as environment monitoring. The key challenging issues in designing an MCS system include selecting appropriate users to participate in a specific sensing task and designing efficient data sensing and transmission policies for data collection and aggregation. In mobile edge networks, the limitation on network resources including bandwidth and energy affects the design of MCS significantly. Specifically, the limited resources affect whether and how to select users for a sensing task, and the bandwidth allocated to a user affects its data sensing and transmission policies. Since user selection, bandwidth allocation, data sensing and transmission are closely coupled issues in MCS, we focus on designing a unified framework for joint sensing and communication, by jointly optimizing the aforementioned four policies under resource constraints. In particular, we first derive the optimal data sensing and transmission policies under a given user selection and bandwidth allocation scheme. Then we use the Hungarian algorithm and dynamic programming to optimize the user selection and bandwidth allocation, under static and dynamic bandwidth allocation scenarios respectively. Simulation results show that the proposed unified framework significantly outperforms several baseline solutions without considering wireless link vulnerability and/or resource limitations.

  (4)主讲人简介:

  Xiaoqian Li received the B. Eng. and M. Eng. degrees in communication engineering from the University of Electronic Science and Technology of China, in 2013 and 2016, respectively, and the Ph.D. degree in communication engineering from the University of Hong Kong in 2020. She is currently a postdoctoral researcher in the University of Electronic Science and Technology of China, Chengdu, China. Her research interests include next-generation Internet, mobile edge computing, and mobile crowd sensing.

  报告5:

  (1)主题:Markovian Cascaded Channel Estimation for RIS Aided Massive MIMO Using 1-Bit ADCs and Oversampling

  (2)主讲人:邵志超  通信抗干扰技术国家级重点实验室博士后

  (3)交流内容:

  In this work, the reconfigurable intelligent surface (RIS) aided massive multiple-input multiple-output (MIMO) system is considered, where the base station employs a large antenna array with low-cost and low-power 1-bit analog-to-digital converters (ADCs). To compensate the performance loss caused by the coarse quantization, oversampling is applied at the receiver. The main challenge for the acquisition of cascaded channel state information in such a system is to handle the distortion caused by the 1-bit quantization and the sample correlation caused by oversampling. In this work, Bussgang decomposition is applied to deal with the coarse quantization and a Markov chain is developed to characterize the banded structure of the oversampling filter. An approximate message-passing based algorithm is proposed for the estimation of the cascaded channels. Simulation result demonstrate that our proposed 1-bit systems with oversampling can approach the 2-bit systems in terms of the mean square error performance while the former consumes much less power at the receiver.

  (4)主讲人简介:

  Zhichao Shao received his B.Sc. degree in information engineering from Xidian University, China, in 2012, the M.Sc. degree in electrical engineering from Technische Universität Dresden, Germany, in 2016, and the Ph.D. degree in electrical engineering from the Pontifical Catholic University of Rio de Janeiro, Brazil, in 2020. Currently, he is a post-doctoral researcher with the National Key Laboratory of Science and Technology on Communications, University of Electronic Science and Technology of China. His research interests lie in communications and signal processing.


                     电子科技大学博士后管理办公室

                        2021年10月18日


编辑:林坤  / 审核:林坤  / 发布:陈伟